Integrin family of cell adhesion molecules in the injured brain: Regulation and cellular localization in the normal and regenerating mouse facial motor nucleus

Author(s):  
Christian U.A. Kloss ◽  
Alexander Werner ◽  
Michael A. Klein ◽  
Jun Shen ◽  
Karen Menuz ◽  
...  
1997 ◽  
Vol 34 (1) ◽  
pp. 61-73 ◽  
Author(s):  
C. S. Elangbam ◽  
C. W. Qualls ◽  
R. R. Dahlgren

Cell adhesion molecules are glycoproteins expressed on the cell surface and play an important role in inflammatory as well as neoplastic diseases. There are four main groups: the integrin family, the immunoglobulin superfamily, selectins, and cadherins. The integrin family has eight subfamilies, designated as β1, through β8. The most widely studied subfamilies are β1 (CD29, very late activation [VLA] members), β2 (leukocyte integrins such as CDlla/CD18, CDllb/CD18, CDllc/CD18, and αdβ2), β3 (CD61, eytoadhesions), and β7 (α4β7 and αEβ7). The immunoglobulin superfamily includes leukocyte function antigen-2 (LFA-2 or CD2), leukocyte function antigen-3 (LFA-3 or CD58), intercellular adhesion molecules (ICAMs), vascular adhesion molecule-1 (VCAM-1), platelet-endothelial cell adhesion molecule-1 (PE-CAM-1), and mucosal addressin cell adhesion molecule-1 (MAdCAM-1). The selectin family includes E-selectin (CD62E), P-selectin (CD62P), and L-selectin (CD62L). Cadherins are major cell-cell adhesion molecules and include epithelial (E), placental (P), and neural (N) subclasses. The binding sites (ligands/receptors) are different for each of these cell adhesion molecules (e.g., ICAM binds to CD11/CD18; VCAM-1 binds to VLA-4). The specific cell adhesion molecules and their ligands that may be involved in pathologic conditions and potential therapeutie strategies by modulating the expression of these molecules will be discussed.


2005 ◽  
Vol 33 (6) ◽  
pp. 1308-1312 ◽  
Author(s):  
D.R. Critchley

The cytoskeletal protein talin plays a key role in coupling the integrin family of cell adhesion molecules to the actin cytoskeleton. In this paper I present a brief review on talin and summarize our recent studies, in which we have taken both genetic and structural approaches to further elucidate the function of the protein.


1991 ◽  
Vol 97 (3) ◽  
pp. 501-505 ◽  
Author(s):  
Ian A King ◽  
Anne Tabiowo ◽  
Patricia R Fryer ◽  
Patricia E Purkis ◽  
Irene Leigh

Blood ◽  
1994 ◽  
Vol 83 (9) ◽  
pp. 2399-2409
Author(s):  
B Seshi

In an attempt to define the role of cell adhesion molecules (CAMs) within the bone marrow (BM) microenvironment in normal hematopoiesis and in leukemia development, a novel cell-blotting technique that involved cell adhesion to protein bands after separation by lithium dodecyl sulfate-polyacrylamide gel electrophoresis (LDS-PAGE) and blotting onto polyvinylidene difluoride (PVDF) membrane has been developed. Human BM stromal cell membrane fractions have been prepared from Dexter-type cultures after cell lysis by sonification and differential centrifugations of the sonification contents. The 20,000 g pellets representing membrane fractions have been solubilized by 2% Triton X-100, 0.575% LDS, and 8 mol/L urea in sequential order. The protein extracts are fractionated by LDS-PAGE and screened for CAMs by the new cell-blotting technique. This led to identification of nine protein bands in lanes containing LDS extracts showing adhesion of KG1a (CD34+ progenitor myeloid) cells. Evidence that the BM proteins exhibiting KG1a cell adhesion are novel CAMs is based on the observations that these proteins, in comparison with known CAMs, specifically VCAM-1, CD54, and CD44, show (1) contrasting detergent- solubility properties, (2) different temperature requirement for mediating cell adhesion function, and (3) markedly distinct electrophoretic mobilities. The various cell types tested, notably KG1a, NALM-6, WIL-2, Ramos, HS-Sultan, K562, JY B lymphoblastoid cells, and T lymphoblasts, showed distinctive patterns of binding to different subsets of BM CAMs. These results demonstrate a new approach to studies of molecular mechanisms that may determine specificity of hematopoietic cellular localization within BM microenvironment and may play an important role in controlling hematopoiesis.


Blood ◽  
1994 ◽  
Vol 83 (9) ◽  
pp. 2399-2409 ◽  
Author(s):  
B Seshi

Abstract In an attempt to define the role of cell adhesion molecules (CAMs) within the bone marrow (BM) microenvironment in normal hematopoiesis and in leukemia development, a novel cell-blotting technique that involved cell adhesion to protein bands after separation by lithium dodecyl sulfate-polyacrylamide gel electrophoresis (LDS-PAGE) and blotting onto polyvinylidene difluoride (PVDF) membrane has been developed. Human BM stromal cell membrane fractions have been prepared from Dexter-type cultures after cell lysis by sonification and differential centrifugations of the sonification contents. The 20,000 g pellets representing membrane fractions have been solubilized by 2% Triton X-100, 0.575% LDS, and 8 mol/L urea in sequential order. The protein extracts are fractionated by LDS-PAGE and screened for CAMs by the new cell-blotting technique. This led to identification of nine protein bands in lanes containing LDS extracts showing adhesion of KG1a (CD34+ progenitor myeloid) cells. Evidence that the BM proteins exhibiting KG1a cell adhesion are novel CAMs is based on the observations that these proteins, in comparison with known CAMs, specifically VCAM-1, CD54, and CD44, show (1) contrasting detergent- solubility properties, (2) different temperature requirement for mediating cell adhesion function, and (3) markedly distinct electrophoretic mobilities. The various cell types tested, notably KG1a, NALM-6, WIL-2, Ramos, HS-Sultan, K562, JY B lymphoblastoid cells, and T lymphoblasts, showed distinctive patterns of binding to different subsets of BM CAMs. These results demonstrate a new approach to studies of molecular mechanisms that may determine specificity of hematopoietic cellular localization within BM microenvironment and may play an important role in controlling hematopoiesis.


1999 ◽  
Vol 18 (9) ◽  
pp. 547-551 ◽  
Author(s):  
E Hoffer ◽  
Y Baum ◽  
A Tabak ◽  
C Frevert

1 Exposure to elevated levels of ozone results in an infiltration of polymorphonuclear leukocytes (PMNs) into the lungs. The purpose of this study was to investigate whether the ozone-induced inflammatory process is preceded by a change in the expression of adhesion molecules (integrins and selectins) in peripheral blood PMNs and alveolar macrophages in rats. 2 Female Sprague Dawley rats were exposed to air or ozone (1 p.p.m., 2 h). Bronchoalveolar lavage (BAL) was carried out and blood was collected via intracardiac puncture at 0 or 18 h after the exposure. There were no PMN in the BAL fluid at time 0 after the 2 h exposure to ozone. The expression of cell adhesion molecules from the integrin family (represented by CD18) on alveolar macrophages (AM) was lowered. The expression of cell adhesion molecules from the selectin family (represented by CD62L) on blood PMN was not affected by exposure to ozone, while the expression of integrins (CD11b) on blood PMN was lowered. 3 This effect was confirmed by experiments in which plasma of ozone-exposed animals was incubated with PMN from peripheral blood obtained from nonexposed animals. In these experiments, the expression of CD11b on PMNs of non-exposed animals was lower after incubation with plasma from ozone-exposed animals. 4 Our experiments suggest the presence of factor(s) in blood, which cause a decrease in the expression of CD11b on PMNs.


1999 ◽  
Vol 19 (5-6) ◽  
pp. 41 ◽  
Author(s):  
Francisco Sanchez-Madrid ◽  
Roberto González-Amaro

Sign in / Sign up

Export Citation Format

Share Document